

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

Integrated Technologies, Inc. 1910 Merrill Creek Parkway

Everett, WA 98203

Fulfills the requirements of

ISO/IEC 17025:2017

In the field of

TESTING

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 16 September 2025 Certificate Number: L2269

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

Integrated Technologies, Inc. 1910 Merrill Creek Parkway

1910 Merrill Creek Parkway Everett, WA 98203 Gordon Cameron 425 551 3351

TESTING

Valid to: September 16, 2025

Certificate Number: L2269

Mechanical

Specific Tests and/or Properties Measured	Specification, <mark>Standar</mark> d, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Constituent Content of Composite Materials	ASTM D3171 Procedures B and G	Polymer Matrix Composite	Analytical balance, oven and furnace
Density and Specific Gravity (Relative Density)	ASTM D <mark>792, Method A</mark>	Polymer Matrix Composite	Displacement for testing solid plastics in water
Tensile Strength and Modulus, and Strain ²	AST <mark>M D3039</mark> ASTM D658	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Open Hole Tensile Strength and Strain ²	ASTM D5766	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Filled Hole Tension and Compression Strength, and Strain ²	ASTM D6742	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
End Load Compression Properties and Strain ²	ASTM D695 SACMA SRM-1 SACMA SRM-6	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Compression Properties and Strain by Shear Loading ²	ASTM D3410	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Open Hole Compression Strength and Strain ²	ASTM D6484 (Procedure A); SACMA SRM-3	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Combined Load Compression Strength and Strain ²	ASTM D6641	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Short Beam Shear Strength ²	ASTM D2344	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
In-Plane Shear Response (Tension) and Strain ²	ASTM D3518	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Flexure Strength and Strain ²	ASTM D790	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf

Mechanical

Specific Tests and/or	Specification, Standard,	Items, Materials or	Key Equipment or
Properties Measured	Method, or Test Technique	Product Tested	Technology
Bearing Response and Strain ²	ASTM D5961	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Mode I Interlaminar Fracture	ASTM D5528	Polymer Matrix Composite	Tensile Testing Machine
Toughness ²	BSS7273		(5 to 50 000) lbf
Flatwise Tensile Strength ²	ASTM C297	Polymer Matrix Composite Sandwich	Tensile Testing Machine (5 to 50 000) lbf
Shear Properties ²	ASTM D5379 V-Notched Beam Method	Polymer Matrix Composite	Tensile Testing Machine (5 to 50 000) lbf
Core Shear Properties ²	ASTM C393	Polymer Matrix Composite	Tensile Testing Machine
(Sandwich Flexure)		Sandwich	(5 to 50 000) lbf

Thermal

Specific Tests and/or Properties Measured	Specificat <mark>ion, St</mark> andard, Method, or Test Technique	Items, Materials or Product Tested	Key Equipment or Technology
Glass Transition Temperature (Tg)	AST <mark>M E1640</mark> AST <mark>M D7028</mark> SACMA SRM-18	Polymer Matrix Composite	Dynamic Mechanical Analysis (DMA)
Glass Transition Temperature (Tg)	ASTM E1356	Polymer Matrix Composite	Differential Scanning Calorimetry (DSC)
Glass Transition Temperature (Tg)	ASTM E1545	Polymer Matrix Composite	Thermo-Mechanical Analysis (TMA)
Linear Thermal Expansion/ Coefficient of Thermal Expansion (CTE)	ASTM E831	Polymer Matrix Composite	Thermo-Mechanical Analysis (TMA)

Notes:

1. This laboratory offers commercial testing service.

2. For Ambient and Non-Ambient Temperature (-100 to 300) °C.

3. This scope is formatted as part of a single document including Certificate of Accreditation No. L2269.

Jason Stine, Vice President

