

CERTIFICATE OF ACCREDITATION

The ANSI National Accreditation Board

Hereby attests that

MicroscOptics, Inc. 9126 Pineview Lake Court Linden, MI 48451

Fulfills the requirements of

ISO/IEC 17025:2017

and national standard

ANSI/NCSL Z540-1-1994 (R2002)

In the field of

CALIBRATION

This certificate is valid only when accompanied by a current scope of accreditation document. The current scope of accreditation can be verified at <u>www.anab.org</u>.

Jason Stine, Vice President Expiry Date: 10 April 2026 Certificate Number: AC-1218

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

AND

ANSI/NCSL Z540-1-1994 (R2002)

MicroscOptics, Inc.

9126 Pineview Lake Court Linden, MI 48451 James L. Short 248-328-0433

CALIBRATION

Valid to: April 10, 2026

Certificate Number: AC-1218

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Microscopes ¹ Length & Linearity (Eyepiece micrometers and image systems)	(0.000 4 to 1) in (0.01 to 25) mm	14 μin 0.34 μm	Stage Micrometer
Linear Stage Measurement Devices ¹ Length & Linearity, X, Y axis's Length & Linearity, Z-axis (Optical & Digital Comparators, MeasureScopes, and CNC Video Microscopes)	(1 to 12) in (0.01 to 300) mm (0.02 to 105) mm	175 μin 1.1 μm 0.32 μm	Glass Scales, Step Gage, Gage Blocks
Optical and Contact Profilometers ¹ Ra Step Height Angle Capable Measurement Devices ^{1,2}	Up to 3 μm (0.02 to 105) mm	40 nm 0.13 μm	Surface Finish Specimen Step Gage, Gage Blocks
(Optical & Digital Comparators and Image Systems)	(0 to 360)°	2'	Angle Blocks

www.anab.org

Length – Dimensional Metrology

Parameter/Equipment	Range	Expanded Uncertainty of Measurement (+/-)	Reference Standard, Method, and/or Equipment
Magnification ¹ (Optical & Digital Comparators, Eye Loupes, and Image Systems)	Up to 2 000X	0.13 % of the nominal magnification	Glass Scale Comparison

Calibration and Measurement Capability (CMC) is expressed in terms of the measurement parameter, measurement range, expanded uncertainty of measurement and reference standard, method, and/or equipment. The expanded uncertainty of measurement is expressed as the standard uncertainty of the measurement multiplied by a coverage factor of 2 (k=2), corresponding to a confidence level of approximately 95%. Notes:

1. On-site calibration service is available for this parameter, since on-site conditions are typically more variable than those in the laboratory, larger measurement uncertainties are expected on-site than what is reported on the accredited scope, ' = arc-minute.

- 2.
- 3. This scope is formatted as part of a single document including Certificate of Accreditation No. AC-1218.

Jason Stine, Vice President

Version 018 Issued: March 29, 2024

www.anab.org